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Abstract

Purpose: False positives in digitalmammography screening
lead to high recall rates, resulting in unnecessary medical
procedures to patients and health care costs. This study aimed
to investigate the revolutionary deep learning methods to
distinguish recalled but benign mammography images from
negative exams and those with malignancy.

Experimental Design: Deep learning convolutional
neural network (CNN) models were constructed to clas-
sify mammography images into malignant (breast can-
cer), negative (breast cancer free), and recalled-benign
categories. A total of 14,860 images of 3,715 patients
from two independent mammography datasets: Full-Field
Digital Mammography Dataset (FFDM) and a digitized
film dataset, Digital Dataset of Screening Mammography
(DDSM), were used in various settings for training and
testing the CNN models. The ROC curve was generated

and the AUC was calculated as a metric of the classifica-
tion accuracy.

Results: Training and testing using only the FFDM dataset
resulted in AUC ranging from 0.70 to 0.81. When the DDSM
dataset was used, AUC ranged from 0.77 to 0.96. When
datasets were combined for training and testing, AUC ranged
from 0.76 to 0.91. When pretrained on a large nonmedical
dataset and DDSM, the models showed consistent improve-
ments in AUC ranging from 0.02 to 0.05 (all P > 0.05),
compared with pretraining only on the nonmedical dataset.

Conclusions: This study demonstrates that automatic deep
learning CNNmethods can identify nuanced mammographic
imaging features to distinguish recalled-benign images from
malignant and negative cases, which may lead to a comput-
erized clinical toolkit to help reduce false recalls. ClinCancer Res;
1–8. �2018 AACR.

Introduction
Mammography is clinically used as the standard breast cancer

screening exam for the general population and has been shown
effective in early detection of breast cancer and in reduction of
mortality (1–3). High recall (asking a woman back for additional
workup after a screening mammogram) rates are, however, a
concern in breast cancer screening. On average, approximately
11.6% of women in the U.S. (over 5 million women annually)
who are screened using digital mammography are recalled and
over 70% of more than 1 million breast biopsies performed
annually are benign (4, 5), resulting in unnecessary psychological
stress, medical costs, and clinical workload. Thus, reducing
false recalls from screening mammography is of great clinical
significance.

Observer performance in breast cancer detection in screening
mammography varies widely and is influenced by experience,
volume, and subspecialization among other factors (6). One
approach to improving mammographic interpretation is to

provide the radiologist with powerful computerized tools to
aid in image interpretation and decision-making. To help
radiologists make more accurate decisions on whether to recall
a patient, we focused on building computer-aided models/
classifiers that can distinguish subtle imaging characteristics of
mammograms from patients who were recalled but biopsied
with benign results from mammograms read as negative from
the onset, and mammograms from recalled cases with biopsy-
proven breast cancer. Computerized classifiers can assist radi-
ologists in predicting which patients/images may be recalled
but most likely benign.

Deep learning (7) coupled with a big dataset has shown
promising performance in many artificial intelligence applica-
tions and is entering the field of biomedical imaging (8–10).
The main architecture of deep learning for image data is the
convolutional neural network (CNN; ref. 11). The most
distinguishing strength of the CNN is that it can automatically
learn and hierarchically organize features from a large dataset
without manual feature engineering (7, 12, 13) and outper-
formed, in many scenarios, traditional manual-engineered
imaging features/descriptors. Although deep learning CNN can
be used as an offline feature-extractor where features are cou-
pled with traditional classifiers (14), it is more common to
build end-to-end deep learning classification models (15, 16).
Studies applying deep learning to digital mammography
images have focused on mass and microcalcification detection
and classification, distinction between tumor and benign/
normal tissue (17–21), breast tissue segmentation (22), and
classification of breast anatomy (9).

Recently, a number of groups competed under the Digital
Mammography DREAM challenge (23) to distinguish malignant
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from negative mammogram images. While important, distin-
guishing potentially recalled but biopsy benign images fromboth
malignant and negative images represents a critical need and a
practical approach to aid radiologists. The purpose of this
study was to investigate end-to-end deep learning CNN models
for automatic identification of nuanced imaging features to dis-
tinguish mammogram images belonging to negative, recalled-
benign, and malignant cases aimed to improve clinical mammo-
graphic image interpretation and reduce unnecessary recalls.

Materials and Methods
We performed a retrospective study that received Institutional

Review Board approval at our institution. This study was com-
pliant to the Health Insurance Portability and Accountability Act
and the U.S. Common Rule. Informed consent from patients was
waived due to the retrospective nature.

Study cohort and datasets
We used two independent mammography datasets to develop

and evaluate deep learning classifiers. These two independent
mammogram datasets include a total of 3,715 patients and
14,860 images. A patient case typically contains a single patient
exam with the standard four screening mammography views
including left and right breast with craniocaudal (CC) and med-
iolateral oblique (MLO)views.Malignant imageswere taken from
patients determined to have breast cancer based on the pathology
results (only images of the cancer-affected breast were used).
Negative images were from those who maintained a breast
cancer–free status after at least a one-year follow-up. Recalled-
benign images were taken from patients who were recalled based
on the screening mammography exam but later determined as
benign (biopsy-proven or diagnostically confirmed).

Full-field Digital Mammography dataset. This is a retrospective
cohort of 1,303 patients (5,212 mammogram images) who
underwent standard digital mammography screening (2007–
2014) at our institution: 552 patients were evaluated as negative
in the initial screen; 376 patients were recalled-benign;
375 patients were evaluated as positive for breast cancer (101 or
26.9% ductal carcinoma in situ and 274 or 73.1% invasive) based
on pathology results.

Digital Database of Screening Mammography dataset. The Digital
Database of Screening Mammography (DDSM) dataset (24–26)
is a large collection of digitized film mammography images. A
total of 9,648 images consisting of 2,412 patient cases were used
from this dataset. Six-hundred andninety-five caseswere negative,
867 malignant, and 850 recalled-benign.

Deep learning approach for building classifiers
We built end-to-end two-class and three-class CNNmodels to

investigate six classification scenarios: Five binary classifications:
malignant versus recalled-benign þ negative (i.e., recalled-
benign and negative are merged into one class), malignant
versus negative, malignant versus recalled-benign, negative
versus recalled-benign, and recalled-benign versus malignant
þ negative (negative and malignant are merged into one class),
as well as one triple classification: malignant versus negative
versus recalled-benign.

The CNN used a modified version of the AlexNet (11, 27)
model. The CNN structure consists of five convolutional layers
(includes max-pooling in the 1st, 2nd, and 5th convolutional
layers) followed by two fully connected layers and a fully con-
nected output layer with a final softmax function. CNN model
parameters were fixed in all experiments: batch size of 50 for
stochastic gradient descent, a weight decay of 0.001, and a
momentum of 0.9. For the learning rate, we started with 0.001
and dropped the rate by a factor of 10 every 2,500 iterations. To
speed up training, rectified linear units were used as the activation
function in place of traditional tangent sigmoid functions (7). To
maximize performance and increase computational efficiency of
the AlexNet network, images were preprocessed using standard
techniques including histogram equalization, mean subtracting,
anddownsamplingusing standard bicubic interpolation to 227�
227 pixels from original resolution.

Transfer learning was used to enhance model training. We
pretrained all the CNN models with a large existing image
dataset [ImageNet (28), 1.3 million nonmedical images] and
then fine-tuned the models with our own mammography
dataset. In a novel approach, we also tested the incremental
transfer learning strategies: first pretraining the network using
ImageNet and then continuing with the DDSM dataset, and
finally fine-tuning and testing on the Full-field Digital Mam-
mography (FFDM) dataset.

TheCNNwas trainedwith the goal of increasing variationof the
data and avoiding overfitting. Internal validation is based on
6-fold cross validation of training data in the CNNmodel training
phase, reducing overfitting and calibrating accuracy of the training
process. External evaluation of the CNN models was performed
using unseen testing data.

The deep learning network was implemented using the Caffe
platform running on a desktop computer system with the
following specifications: Intel Core i7-2670QM CPU@2.20GHZ
with 8 GB RAM and a Titan X Pascal Graphics Processing
Unit (GPU).

Evaluation and statistical analysis
An independent test cohort consisting of approximately 5% of

our datasets was used for testing (95% data for training). We used
this setting to maximize the amount of data for CNN model
training. Table 1 summarizes the number of images used in
our independent training and testing datasets in each experiment.
As an additional robustness analysis, we also repeated the

Translational Relevance

Breast cancer screening mammography is currently affected
by high false recall rates resulting in unnecessary stress to
patients, increased medical costs, and increased clinical work-
load. Deep learning convolutional neural networks (CNN)
can be used to recognize the nuanced imaging features that
distinguish recalled but benignmammography images, which
may not be identifiable by human visual assessment. These
imaging features can then be used for imaging interpretation
and lead to computational tools that aid radiologists in
distinguishing these images and thus help in the reduction
of the false recall rate. In addition, with the ability of the CNN
model to distinguish between negative andmalignant images,
deep learning can also perform well in computer-aided diag-
nosis of breast cancer.
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experiments by using 10% and 15% of the data as independent
sets for testing. In all settings, testing data did not include any
images used in training.

We performed four different experiments/strategies utilizing
the two datasets in testing the CNN model's performance in six
classification scenarios. These four experiments included: (i)
using the FFDM dataset only for training and testing; (ii) using
the DDSM dataset only for training and testing, in order to
determine how our CNN model performs on an independent
dataset; (iii) using the FFDM and DDSM datasets together by
combining the datasets (mixing up) for both training and testing,
and finally (iv) using incremental transfer learning by pretraining
the CNN model on the DDSM dataset after pretraining on the
ImageNet dataset. Note that in all four experiments the base CNN
models are pretrained on the ImageNet and fine-tuned with the
FFDM dataset.

To explore clinical caution for reducing the risk of false
negatives in recalling a woman, we performed additional
classification experiments using CNN models to distinguish
false negatives from recalled-benign cases and also from
negative cases. Here, we used interval cancers as the false
negative cases in the experiments.

The ROC curve (29) was generated and AUC was calculated as
a metric of classification accuracy. For the triple classification,
since ROC is a binary-class evaluation method, we followed the
common practice in literature of generating an ROC curve for
each binary-class combination and then reporting the average of
the AUCs. Ninety-five percent confidence intervals (CI) were
calculated for AUC values using bootstrapping methods (30).
DeLong test (31) was used to evaluate the statistical significance
when comparing differences of AUCs. All statistical tests were
two-sided.

Results
Results on FFDM dataset

As shown in Fig. 1, we found that all categories can be well-
distinguished (AUC ranging from 0.66 to 0.81) in the FFDM
dataset. The identified imaging features between recalled-benign
and negative were most distinguishing (AUC ¼ 0.81; 95% CI,
0.75–0.88). Recalled-benign versusmalignantþnegative (AUC¼
0.76; 95% CI, 0.67–0.86) had the second best performance,
followed by malignant versus negative (AUC ¼ 0.75; 95% CI
0.65–0.84). Malignant versus recalled-benign had performance

Figure 1.

Performance results for deep learning CNN models for classification on the FFDM dataset. Left, ROC curves for the binary classification scenarios and
corresponding AUCs. Right, ROC curves for the triple-class classification scenario and averaged AUC.

Table 1. Number of training and testing images from the FFDM and digital DDSM datasets used for each experiment. The negative versus recalled-benign scenarios
(negative vs. recalled-benign) havemore data and thus are listed separately. For simplicity, all other scenarios (malignant vs. negativeþ recalled-benign, malignant
vs. negative, malignant vs. recalled-benign, malignant vs. negative vs. recalled-benign, recalled-benign vs. malignantþ negative) are listed under "Others." Both the
total number of images in the scenario as well as the images per category are displayed.

Number of training and testing images used
Training Testing

Dataset/experiment Scenario Total Per category Total Per category

FFDM only (Train & Test) Negative vs. recalled-benign 3,040 1,520 160 80
Others 1,734 867 100 50

DDSM only (Train & Test) Negative vs. recalled-benign 5,282 2,641 278 139
Others 3,294 1,647 172 86

FFDMþDDSM (Train & Test) Negative vs. recalled-benign 8,322 4,161 438 219
Others 5,028 2,514 272 136

Pre-train on ImageNet and DDSM, test on FFDM Negative vs. recalled-benign 3,040 1,520 160 80
Others 1,734 867 100 50

Deep Learning in Mammography
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result of AUC ¼ 0.74 (95% CI, 0.65–0.84). Malignant versus
negativeþ recalled-benign had AUC¼ 0.70 (95%CI, 0.60–0.80).
Triple classification (malignant vs. negative vs. recalled-benign)
had an average AUC of 0.66.

Results on DDSM dataset
Figure 2 shows the results on theDDSMdataset.We foundAUC

ranged from 0.77 to 0.90. Negative versus recalled-benign and
malignant versus negative showed the best performances with
AUC of 0.96 (95%CI, 0.94–0.98) and 0.93 (95%CI, 0.89–0.97),
respectively. Triple classification had an average AUC of 0.85.
Recalled-benign versus malignant þ negative showed the next
best performance at 0.83 (95% CI, 0.77–0.89). Malignant versus

recalled-benign and malignant versus negativeþ recalled-benign
showed similar performance with AUCs of 0.78 (95% CI, 0.71–
0.85) and 0.77 (95% CI, 0.70–0.84), respectively.

Results on combined FFDM and DDSM datasets
Figure 3 shows performance results when the two datasets were

combined (mixed together) for both training and testing. AUC
ranged from 0.76 to 0.91. Best performance was observed for
negative versus recalled-benign (AUC ¼ 0.91; 95% CI, 0.89–
0.94). With an AUC of 0.84 (95% CI, 0.79–0.88), malignant
versus negative had second best performance, followed by
malignant versus negative versus recalled-benign with an average
AUC of 0.79, then recalled-benign versus malignant þ negative

Figure 2.

Performance results for deep learning CNN models for classification on the DDSM dataset. Left, ROC curves for the binary classification scenarios and
corresponding AUCs. Right, ROC curves for the triple-class classification scenario and averaged AUC.

Figure 3.

Performance results for deep learning CNN models for classification using combined FFDM and DDSM datasets for training and testing. (Left) ROC curves
for the binary classification scenarios and corresponding AUCs. Right, ROC curves for the triple-class classification scenario and averaged AUC.
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(AUC ¼ 0.78; 95% CI, 0.73–0.83). Both malignant versus
recalled-benign and malignant versus negativeþ recalled-benign
had anAUCof 0.76 (95%CI, 0.70–0.82). It is observed that when
FFDM andDDSMwere combined for training and testing, overall
classification showed AUC values between FFDM-only and
DDSM-only results.

Incremental transfer learning using the DDSM dataset
DDSM dataset was used to further pretrain the base CNN

network (after originally being pretrained on the ImageNet data-
set), which was then fine-tuned with the FFDM dataset. Testing
data was also from the FFDM dataset. As can be seen in Fig. 4,
when compared with results using ImageNet pretrained model,
all scenarios showed an increase in performance using this incre-
mental transfer learning strategy, although not statistically
significant (P > 0.05). Malignant versus recalled-benign showed
the greatest increase in performance increasing from 0.75 to 0.80
(95% CI, 0.71–0.88, P ¼ 0.10) or 5%, followed by malignant
versus negative þ recalled-benign (AUC ¼ 0.70–0.74; 95% CI,
0.65–0.84; P ¼ 0.15). Malignant versus negative and recalled-
benign versus malignant þ negative both had their AUC increase
by 0.03, 0.74 to 0.77 (95% CI, 0.68–0.87; P ¼ 0.30) and 0.76 to
0.79 (95% CI, 0.70–0.87; P ¼ 0.31) respectively. Negative versus
recalled-benign and the triple classification (malignant vs. nega-
tive vs. recalled-benign) had the least increase (2%or 0.02 inAUC,
0.66–0.68 for triple classification), although negative versus
recalled-benign had the best performance of all the scenarios
[AUC ¼ 0.83 (95% CI 0.76–0.87; P ¼ 0.34) compared with 0.81
for ImageNet pretrained model].

Robustness analysis
In the robustness analysis using 10% and 15% data for

testing (Fig. 5), as expected, we see a slight decrease in the
AUC performance in almost all the scenarios compared with
those using 5% for testing. This is partly due to the reduced
amount of data for training. We also found that the perfor-
mances overall remained relatively stable, demonstrating the
robustness of our CNN models on a varied amount of data for
training and testing.

False negative analysis
The CNN models were further tested on correctly identifying

false negative cases/images. In our FFDM dataset, there are 34
interval cancer patients examined as false negative cases. We
retrained the CNN models (both the malignant vs. negative
scenario and the malignant vs. recalled-benign scenario) on
the FFDM dataset only and excluding those interval cancer
patients, and then tested these models by inputting the false
negative images to the models. Our results showed that 71.3%
(by the malignant vs. negative model) and 63.6% (by the malig-
nant vs. recalled-benignmodel) of the entire false negative images
can be correctly identified by our models. Furthermore, when
we retrained the CNN model by including 50% of the false
negative cases and used the rest of the unseen 50% for testing,
we see improved results, as expected, that is, 72.8% (by the
malignant vs. negative model) and 68.4% (by the malignant vs.
recalled-benign model) of the entire false negative images can be
correctly identified. The CNN models trained by other strategies
(i.e., experiments iii and iv in Section "Evaluation and statistical
analysis") also achieved similar performance (results not shown).

Discussion
In this study, we present a novel investigation showing that

automatic deep learning CNN methods can identify nuanced
mammographic imaging features to distinguish negative,
recalled-benign, and malignant images. We demonstrated that it
is feasible to discover subtle imaging distinction for six classifi-
cation scenarios on two different imaging datasets.

Among the six scenarios, negative versus recalled-benign
showed the best performance. This scenario also had the greatest
amount of data, which may have contributed to this improved
performance. The distinction in this scenario implies that certain
imaging features may result in recalled-benign images to be
recalled rather than being determined negative in the first place.
In general, the relatively higher AUCs in negative versus recalled-
benign and also malignant versus recalled-benign indicate that
there are imaging features unique to recalled-benign images that
the CNN-based deep learning can identify and potentially use to

Figure 4.

Comparison of performance results of
deep learning CNN models on
different pretraining strategies: using
original ImageNet pretrained model
versus using model pretrained on
ImageNet and DDSM dataset. All the
AUCs were results based on training
(fine-tuning) and testing on the
FFDM dataset.
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help radiologists in making better decisions on whether a patient
should be recalled or is more likely a false recall. The six classi-
fication scenarios were designed to reveal different aspects of
performance of the CNN models. It however remains to be
determined which scenario, especially in terms of binary-
classification or triple-classification, would be the most useful
andmeaningful choice in implementing a real-world CNNmodel
to help radiologists make recall decisions in a clinical setting.
There are noticeable variations in the classification performance
between binary and triple classification. This is something to be
further investigated in conjunction perhaps with reader studies to
evaluate their clinical effects in depth. Of note, with the ability of
the CNN model to distinguish between negative and malignant
images, the results indicate that deep learning can also perform
well in computer-aided diagnosis of breast cancer.

In terms of diagnosis (i.e., malignant vs. negative), literature
has reported a great reader variability of radiologists in sensi-
tivity and specificity in screening mammography (4). Using
previously reported radiologists' overall sensitivity 86.9% as
a reference threshold (4), our best deep learning model for
classifying malignant versus negative yields a specificity of 87%,

comparable with radiologists' overall specificity of 88.9%. This
is encouraging for the current scale of our datasets. With
enlarged datasets, we would expect further improvement in
our model's performance. In terms of our major motivation of
this work for reducing recalls, the lack of exact radiologists'
performance data in the literature prevents us from making a
reasonable comparison to our CNN models. We aim to further
investigate this with a reader study in future work.

Our CNN models demonstrated encouraging results in the
false negative analysis. Prevention of false negatives may be an
important reason for the high recall rate in current clinical
practice. By examining classifications of the interval cancer
cases, it indicates a potential of the CNN models to help
correctly identify as malignant a majority of false negative cases
from recalled-benign cases or from negative cases. This also
implies that some cases may be recalled due to certain imaging
indications besides the intention of preventing false negatives.
Further study into this issue on a larger cohort of false negative
cases is of great clinical importance.

In terms of dataset, we started with a digital mammography
dataset, FFDM, as it is the current standard screening

Figure 5.

Comparison of performance results
using varying amounts (5%, 10%,
and 15%) of testing data across all
models: FFDM-trained model (top
left); DDSM-trained model (top right);
FFDM þ DDSM–trained model
(bottom left); incrementally
pretrained CNN models in all
scenarios (bottom right).
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mammography examination. To demonstrate that our CNN
models can be used on a dataset from an independent institution,
we tested our models on the DDSM dataset. The DDSM alone
showed the best performance overall. This may be due to the
larger dataset size or something intrinsic to the characteristics of
the DDSM dataset. When the FFDM and DDSM datasets were
combined, the overall improved performance was observed in
comparison with using FFDM alone. This indicates that our CNN
model is robust to an external dataset and its performance can be
further improved by including additional data.

Because the DDSM dataset is based on digitized film mam-
mography images and current clinical practice has moved to
digital mammography, we wanted to determine the best use of
the DDSM to improve results on the FFDM dataset. The most
straightforward way was simply to combine it with the FFDM
datasets, which improved results when testing on the combined
datasets.More importantly, we demonstrated a novel approach of
incremental transfer learning using the DDSM dataset, which
enhanced the performance consistently on the FFDM dataset in
all six scenarios. The incremental transfer learning we used was a
two-phase transfer learning approach using two different datasets
consecutively (i.e., ImageNet then DDSM). The improvement
may be due to using DDSM to fine-tune the model's weights
rather than directly in training, allowing the noise from being a
different type ofmammography dataset to be dampened. It could
also be related to the strengths of DDSM as a medical imaging
modality that is close to the target modality (i.e., digital mam-
mography) infine-tuning theweights learned frompretraining on
the nonmedical imaging dataset of ImageNet. Many studies have
shown the benefit of transfer learning in medical domains with
limited data (32).Our results in this study provide deeper insights
in developing more optimized transfer learning strategies. How-
ever, the incremental transfer learning and the observationsmade
here needs to be evaluated by further analyses and comparative
studies in future work.

In comparing the various deep/transfer learning strategies, we
show that adding/mixing a larger independent dataset, even if it is
not exactly the same imaging modality, helped improve the CNN
models in our classification tasks. Furthermore, using this kind of
additional dataset in an incremental transfer learning approach
has shown a trend of boosted model performance. Although the
AUC increases are not statistically significant, additional data will
help further evaluate this finding. As to mixing two datasets or
using transfer learning, it depends on the specific scenarios and
their actual classification performance. Although we have shown
encouraging results in this study, we believe this is still an open
question meriting further investigation.

In traditional computer-aided detection or diagnosis, themod-
els are usually based on predefined features, which require pre-
emptive determination of which features will work best for the
task at hand. In contrast, with the deep learning method we
utilized, predefinition of the imaging features is not necessary
and are learned automatically from labeled data. Deep learning
allows nuanced features to be determined by the learning algo-
rithm for the targeted task,where intrinsic features thatmaynot be
identifiable by human visual assessment can be automatically
identified and used for imaging interpretation. This study illus-
trated the encouraging effects of such automatic feature identifi-
cation by deep learning.

Our study has some limitations. Although we have two
independent datasets, additional datasets, especially another

digital mammography dataset, can further bolster the evalua-
tion of the deep learning models. We are currently trying to
obtain external datasets for such experiments. Also, it is still not
clear why the DDSM performed substantially better than the
FFDM dataset; this requires further exploration. Of note, digital
breast tomosynthesis is increasingly being used in clinical
practice, and it has been shown to reduce recall rates (33);
thus, incorporation of tomosynthesis data in our study will be
important future work. Although we utilized AlextNet CNN
structures in this study, comparison with other network struc-
tures such as Residual Network (34), VGG (35), or GoogLeNet
(36) will be useful to gain further insights on the potential of
deep learning.

Finally, it would be useful to present to radiologists the
subtle imaging features found by our CNN models in distin-
guishing the different groups. However, we are not yet able to
clearly visualize and clinically interpret what the identified
nuanced imaging features are for recalled but benign images
or for the other classification categories. At this phase, deep
learning is often referred to as a "black-box" due to the lack
of interpretability of the identified features. A current area
of investigation we are exploring is to visualize the CNN-
identified features to be more intuitively perceived by radiol-
ogists. The complexity of deep learning network structures,
parameters, and data evolving process across different network
layers, however, make feature visualization very complicated,
requiring in-depth research. Further technical advancement in
this active research area is expected to contribute to addressing
this important issue.

In summary, we showed that the three different imaging
reading categories (malignant, negative, and recalled-benign)
could be distinguished using our deep learning–based CNN
models. We believe our study holds great potential to incor-
porate deep learning–based artificial intelligence into clinical
workflow of breast cancer screening to improve radiologist
interpretation of mammograms, ultimately contributing to
reducing false recalls.
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